
IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.63227 979

Plagiarism Tool

Mangesh Chandane
1
, Medha Sarang

2
, Sudarshan Borade

3
,

Amol Dhamale

4

Student, Computer Engineering, ICEM, Pune, India 1,2,3,4

Abstract: Plagiarism is a growing problem in academia. Academics always use plagiarism detection tools to find

similar source-code files. Once similar files are detected, the academic investigates the process which involves

identifying the similar source-code fragments within them. These source code fragments could be used as evidence for

proving plagiarism. The tool implements a new approach for investigating the similarity between source-code files with
a view to gathering evidence for proving plagiarism. Graphical evidence is presented that allows for the investigation of

source-code fragments with regards to their contribution toward evidence for proving plagiarism. The graphical

evidence indicates the relative importance of the given source-code fragments across files in a corpus. This is done by

using the Latent Semantic Analysis information retrieval technique to detect how important they are within the specific

files under investigation in relation to other files in the corpus.

Keywords: Java Corpus, LSA, Cosine similarity.

I. INTRODUCTION

In the computer science field, there are number of
probabilities that code theft problems are occurred. In the

education system, students submit their projects work and

the programming assignments, there may be possibility of

duplication in source code. The manually plagiarism

detection in the source code is a very difficult task. Mostly

the people in computer science are using programming

assignments of another one. In the plagiarism detection

process, there are two parts. In the first part, it generates a

representation from a given program. The intermediate

representation is used for evaluating the similarity between

two programs or projects. A token sequence is often used

by intermediate representation. Plagiarism detection
system uses the token sequence.

In the second part, system evaluates several techniques

and methods are developed for identifying similar code

software projects with similar codes. In plagiarism is easy

to do, but it is not easy to detect. Usually, when students

solve the same problem by using the same programming
language source code, there is a high possibility that their

assignment solutions will be more similar. Strategies of

source code modification that can be used to mask source

code plagiarism. Examples of such strategies are renaming

identifiers and combining several segments copied from

different source code files.

LATENT SEMANTIC ANALYSIS

Latent Semantic Analysis is an information retrieval

technique comprising mathematical algorithms that are

applied to text collections. Initially a text collection is
preprocessed and represented as a term-by-file matrix

containing terms and their frequency counts in files.

Matrix transformations are applied such that the values of

terms in files are adjusted depending on how frequently

they appear within and across files in the collection.

SYSTEM ARCHITECTURE

Fig: System Architecture

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.63227 980

Java Source Code Corpus:

It contain multiple or number of java application(desktop

and web) .Any Java application contain Java source code

file, configuration file, libraries, JSP/HTML pages and

Java doc.

Collect source code:

We collect all the .java files from each application. We use

recursive function to collect all the source code files or

java files.

Preprocess source code:

For each .java file we preprocess the data in the following

ways:

1.Removing line comments.

e.g. //………….//, ///……….///
2.Removing block comments.

For example, /*……….

 ………...

 */

3.Removing multiple white spaces excluding single space.

4.Removing multiple line breaks excluding single line

break.

Tokenize source code:

After preprocessing each Java file we collect distinct

tokens and further we calculate union set of all the

collected tokens.

Create term by file matrix:

The term by file matrix will consist of the terms i.e. tokens

of source code files as columns and files i.e. Java files as
rows. This matrix will contain that how many tokens have

occurred in each file.

Query source code:

Query source code is any .java file which is taken as an

input. This .java file will undergo in the same technique

i.e. Latent Semantic Analysis(LSA).

Create query vector:

In this module, we will get one row as a vector which will

contain the tokens.

Cosine similarity measures:

In this we calculate cosine similarity between the query

vector and term by file matrix, which we have generated

from LSA.

Suspicious source code file and innocent source code

file:

When we calculate cosine similarity, we get two files:

suspicious source code files and innocent source code

files. Suspicious source code files are those files which are

copied files and innocent files are those which are

uncopied. Suspicious source code file and innocent source

code file are recognized between 0 and 1. If we get the

value of files greater than 0.5 then it is called as suspicious

file. If we get the value of file less than 0.5 then it is called

as innocent file.

Generate report data:

We generate the ratio of suspicious source code file and

innocent source code file. We need to calculate percentage

of plagiarism from each suspicious file. We find maximum

percentage of plagiarism in the file which will be the most

plagiarized file.

Generate plagiarism report:

We create a pdf of plagiarism report which contain
suspicious to innocent ratio, plagiarism percentage is

detected in each suspicious file, maximum percentage of

plagiarism, overall percentage of plagiarism and the

copied tokens will be highlighted from the plagiarized

files.

ALGORITHM

• Step 1: Start

• Step 2: Read java source files

• Step 3: Collect source codes, preprocess source code

• Step 4: Generate tokens for each file and union it and
create matrix of term vs. file

• Step 5: Read query java source file

• Step 6: Goto step 3

• Step 7: Goto step 4

• Step 8: Find cosine similarity for each file with query

source file

• Step 9: If cosinesim > 0.5 then suspicious file else

innocent file

• Step 10: If plagiarism found then generate report in pdf

• Step 11: Else Goto step 1

 LITERATURE SURVEY

In March 2012 Mike Joy and Georgina Cosma proposed

that a novel approach based on the Latent Semantic

Analysis information retrieval technique for enhancing the

plagiarism detection and investigation process. The main

aim is to detect source code files missed by current

plagiarism detection tools, to provide visualization of the

relative similarity between files and to provide a facility

for investigating similar source code fragments and

indicate the ones that could be used as strong evidence for
proving plagiarism.

In the year 2013, Frederik Hattingh, Albertus A. K.

Buitendag and Jacobus S. van der Walt suggests that

plagiarism remains an active and ongoing problem and

threat to academic institutions. Reactive and proactive

methods of plagiarism prevention and detection do not

align and complement each other. In traditional source

code plagiarism detection engines that consider plagiarism

detection a pattern matching problem, no indication is

given on the reason for the student choosing to plagiarize.

The proposed implementation of detecting plagiarism by
utilizing metrics gained over time which is reported in

real-time aims to improve the link between proactive and

reactive methods of plagiarism detection. The formative

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.63227 981

assessment and feedback model presented as part of this

paper aims to limit the practice of plagiarism by providing

real-time feedback to the student as well as the educator.

This process could act as a deterrent for the practice as

well as enhance the learning processes of the individual

student. By incorporating real time feedback the student is

proactively warned of possible plagiarism infringement

and can correct the situation. The educator will still have

the final say on a case by case basis maintaining the ability
to reactively respond to plagiarism.

In Nov 2014 Tapan P. Gondaliya,Hiren D. Joshi (PhD)

and Hardik Joshi described the real meaning of source

code

plagiarism after that described the different source code

plagiarism detection tools and compared its function,

characteristics and technique. In the last phase authors

discussed the different research papers and compared in

tabular form with its technique, method, characteristics,

functionality and its result. More and more contributions

work towards achieving superlative efficiency and
accuracy in the existing solutions.

In 2014, Divya Luke, Divya P.S, Sony L Johnson,

Sreeprabha S and Elizabeth.B.Varghese compared six

plagiarism detection tools with respect to ten tool features.

Performance was compared by a sensitivity analysis on a

collection of intentionally plagiarized programs and on a

set of real life submissions. The performance was also

compared by examining the top 10 results for each tool to

the results of the others. The results of the comparison

give good insight into the strong and weak points of the
different tools.

In the year 2013, Daniela Marinescu, Alexandra

Băicoianu, Sebastian Dimitriu described an application

used for detection of this kind of plagiarism. This tool

analyses more projects in the same time and, by using an

efficient algorithm, it can decide if the code is unique or

not. This application was designed for helping teachers

from Transilvania University of Braşov to effectively

detect and thereby prevent plagiarism between students.

The application Source Code Plagiarism Detector was
proved to be effective and of a great help for teachers. Of

course an important role has the lab tutor in formulate the

exercises in a special matter so that to be difficult for a

student to find the solution on the Internet. It remains the

possibility to copy from another student and this

application is made to prevent this kind of plagiarism. By

reducing the impact of plagiarism, this program has an

important role in education of the new generation not only

for student period but also for their future life.

In July 2016, Bharamadeo Vishnu Deokate & Dinesh

Bhagwan Hanchate, conclude that LSA used in
plagiarism detection system, source code and project has

been introduced. The problem of the source-code

plagiarism becomes more complicated task with the

availability of the internet and the growing more web sites.

To detect programing plagiarism, an efficient work to

optimize the speed and the accuracy of the detection

process is important as well as required. This is a difficult

and challenging task which is an extension of this work.

FUTURE SCOPE

A scope of the approach is to generate term by file matrix
of source code corpus and query vector. After finding this

matrix we generate cosine similarity between these query

vector and source code files. Finally we generate a

plagiarism report which comprises percentage of

suspicious files. The input files will be of java only and the

system is only concerned with the code part. The system is

useful in colleges, academics, IT industries. It can be also

used in research centers. The system will be useful in all

the areas where innovation is needed and must be aware

not to use copied data.

CONCLUSION

LSA used in plagiarism detection system, source code and

project has been introduced. The problem of the source-

code plagiarism becomes more complicated task with the

availability of the internet and the growing more web sites.

To detect programming plagiarism, an efficient work to

optimize the speed and the accuracy of the detection

process is important as well as required. This is a difficult

and challenging task which is an extension of this work.

REFERENCES

[1] Mike Joy and Georgina Cosma, "An approach to Source code

plagiarism detection and investgation usin Latent Semantic

Analysis", 2012

[2] Frederik Hattingh, Albertus A. K. Buitendag and Jacobus S. van der

Walt, “Presenting an Alternative Source Code Plagiarism Detection

 Framework for Improving the Teaching and Learning of Programm

ing ”2013

[3] Tapan P. Gondaliya,Hiren D. Joshi (PhD) and Hardik Joshi,“Source C

ode Plagiarism Detection SCPDet: A Review ” 2014

[4] Divya Luke, Divya P.S, Sony L Johnson, Sreeprabha S and Elizabeth.

B.Varghese, “Software Plagiarism Detection Techniques: A Compa

rative Study ”2014

[5] Daniela Marinescu, Alexandra Bicoianu, Sebastian Dimitriu,“A Plagi

arism Detection System in Computer Source Code ”2013

[6] Bharamadeo Vishnu Deokate,Dinesh Bhagwan Hanchate,“Software S

ourceCode Plagiarism Detection Using Latent Semantic Analysis ”

2013

